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We numerically study the transverse Ikeda system describing a ring cavity with a saturable absorber non-
linearity which is driven by a coherent input field. The Gaussian shape of the input beam favors the solutions
to have space inversion symmetry. These solutions bifurcate into states of synchronized spatiotemporal chaos
where synchronization refers to the identical dynamics of the two beam halves. We demonstrate that the
breakdown of this synchronized chaotic state is caused by on-off intermittency. The qualitative and quantitative
features of the transition are studied. In particular, the scaling behavior of the transition in the space domain is
investigated. The results display a qualitative similarity with the scaling behavior of spatiotemporal intermit-
tency.@S1063-651X~96!06809-2#

PACS number~s!: 05.45.1b, 42.65.Sf, 47.20.Ky, 24.60.Lz

I. INTRODUCTION

The complex behavior of spatially extended systems has
been the subject of considerable research effort in various
scientific disciplines@1#. Various bifurcation routes generat-
ing spatiotemporal chaos such as defect-mediated turbulence
@2#, spatiotemporal intermittency@3,4#, and chaotic itiner-
ancy@5–8# have been investigated. Furthermore, it has been
shown that in relatively small systems spatially simple solu-
tions which are chaotic in time evolve towards spatiotempo-
ral chaos by a spontaneous breaking of spatial symmetries
@9–11#. This situation applies, e.g., for systems displaying
synchronized spatiotemporal chaos. This dynamic state ap-
pears when a spatially extended system can be divided into
two identical subsystems which are coupled to each other.
Under certain circumstances, the subsystems will synchro-
nize even if the dynamics in every subsystem is spatiotem-
porally complex@12#. In this contribution we demonstrate
that in the transverse Ikeda system synchronized spatiotem-
poral chaotic states occur and that they bifurcate towards
states of higher spatiotemporal disorder via on-off intermit-
tency.

On-off intermittency has attracted considerable interest as
a mechanism for intermittent bursting during the last few
years@13,14#. Different from the known Pomeau-Manneville
~PM! and crisis-induced intermittency, its basic mechanism
is the action of a dynamical variable as a time-dependent
driving parameter for a second variabley. If this driving
corresponds to a modulation through a bifurcation point,y
shows intermittent behavior. Hereby, the driving variable can
either be a stochastic or a chaotic process. If chaotic pro-
cesses as driving parameters are concerned, the necessary
condition for on-off intermittency is that the phase space of
the system can be divided in two hyperplanes where in hy-
perplane I the chaotic process is generated and in hyperplane
II y15•••5yk50 holds. Consequently, the system displays
the following features: for a bifurcation parametera,e,
wheree is the threshold for intermittency, the signaly de-

cays to zero. Fora>e, intermittent behavior ofy is observed
with long periods neary50 ~laminar phases! and sudden
intermittent bursts with large amplitudes ofy. In the inter-
mittent regime, two scaling laws have been derived@15#: ~a!
the probability distributionP(L) of the duration of the lami-
nar phasesL at a fixed parameter value obeys a power-law
scaling of the formP(L);L23/2, ~b! in dependence on the
parameter valuea, the mean duration of the laminar phases
^L& scales aŝL&;(a2e)21. These results were analytically
derived for stochastic driving processes. Although no proof
is available for chaotic driving processes, numerical investi-
gations showed the same scaling behavior in this case. While
on-off intermittency can thus be confused with PM intermit-
tency of type III if only its characteristic scaling behavior is
considered, the qualitative features of on-off intermittency
distinguish it clearly from the former.

An early example of on-off intermittency has been re-
ported for the breakdown of synchronized chaos in coupled
logistic maps@16#. More recent studies have witnessed the
widespread occurrence of this instability: systems where on-
off intermittency has been studied theoretically comprise
coupled ordinary differential equations, a model for Zeeman
lasers@17# and stochastically driven map lattices@18,19#. In
this context, on-off intermittency has also been called
‘‘modulational spatiotemporal intermittency’’@20# and has
been related to the growth of interfaces in random media.
Experimental evidence for on-off intermittency has been
given in nonlinear electronic circuits@14# and in spin-wave
instabilities@21#.

The systems where on-off intermittency has been ob-
served until today are thus low-dimensional systems or dis-
tributed systems subject to stochastic driving. We will argue
that in spatially extended systems on-off intermittency oc-
curs spontaneously, i.e., without the need for stochastic driv-
ing when certain conditions hold. The reason for this behav-
ior is that in spatially extended systems with a moderate
aspect ratio, solutions occur which are highly disordered in
time but which retain some spatial symmetries. Further bi-
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furcations which lead to states with higher spatiotemporal
disorder then necessarily break these symmetries. Examples
of such bifurcations have been given for hydrodynamical
@10# and nonlinear optical systems@11,22#. For suitable co-
ordinatesyi which are linked to the nonbroken symmetries,
yi50 holds, thus fulfilling the necessary condition for on-off
intermittency as discussed above.

In the case of synchronized motion,yi50 are simply the
differences between the signals of the identical subsystems.
In the model under consideration here, the identical sub-
systems are provided by the identical beam halves of the
nonlinear optical system. This is due to the symmetry of the
Gaussian input beam which favors solutions which are inver-
sion symmetric with respect to the beam center. These solu-
tions retain their symmetry even in the chaotic regime, caus-
ing synchronized chaotic motion of the signal at points with
the same distance from the beam center. This synchronized
motion breaks down in an intermittent process, leading to
more complex spatiotemporal behavior. We show that this
breakdown is caused by on-off intermittency and investigate
its qualitative and quantitative features both in the time and
space domain.

II. MODEL

The model system is a generalization of the well-known
Ikeda model of optical bistability@23# which has proven to
be of great value for the investigation of nonlinear phenom-
ena due to its simplicity and its rich bifurcation behavior
@24,25#. It describes a ring cavity of lengthL which contains
a medium of lengthLmed of homogeneously broadened two-
level atoms. We restrict our study to one transverse dimen-
sion and assume that the polarization and the population in-
version of the two-level atoms can be adiabatically
eliminated. The light propagation through the medium is
then described by the following wave equation@23#:
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50. ~1!

The boundary condition imposed by the ring cavity is

En~x,0!5ATA~x!1R exp~ ikL!En21~x,Lmed!. ~2!

In the wave equation,a denotes the unsaturated absorption
coefficient,D the atomic detuning, andk the wave number of
the input beam. The indexn labels the electric fieldE in the
nth resonator pass;z is the longitudinal andx the transverse
coordinate. In the boundary condition,A(x) denotes the
Gaussian input beamA(x)5A exp(2x2/w1/2

2 ) wherew1/2 is
the full width at half maximum. The results reported in the
following are obtained for parameter values

aLmedD5210, aLmed50.01, T50.1,

kL55.88, k5100, ~3!

which implies a defocusing nonlinearity. Similar results are
obtained for large regions of the parameter space. We nu-
merically solved the model equations using both a split-step
method and a Crank-Nicholson finite difference scheme
yielding almost perfect agreement with each other.

III. SYNCHRONIZED SPATIOTEMPORAL CHAOS AND
ON-OFF INTERMITTENCY

Equations~1! and~2! were extensively analyzed as a sim-
plified model for passive optical systems@23,26–28#. It was
analytically shown that modulational instabilities dominate
the linear stability of the system and that in the focusing
regime, i.e.,D.0, solitonlike structures appear. Numerical
solutions of the model displayed a rich variety of bifurca-
tions into chaos. Later work concentrated on the pattern for-
mation in the chaotic regime@11# and showed that crisis-
induced intermittency plays a major role in the development
of spatiotemporal chaos@22#. In this contribution we analyze
on-off intermittent bifurcations of the synchronized chaotic
state and show that these bifurcations produce spatiotempo-
rally disordered states.

The bifurcation behavior of the system is investigated by
variation of the amplitudeA of the input beam. For increase
of A, the system undergoes first a modulational instability
which leads from a fixed point with a Gaussian space struc-
ture to a period-doubled solution with periodic spatial modu-
lation. A subsequent period doubling and two Hopf bifurca-
tions lead to a two-band chaotic attractor.

The beam profiles in this chaotic state are symmetric with
respect to thex50 axis @Fig. 1~a!#. Signals at the same dis-
tance from the beam center oscillate synchronously yet cha-
otically in time, which means that it is a state of synchro-
nized chaos@9,16,22,29,30#. Signals within the same beam
half, however, are only weakly correlated. The dynamics
within one beam half is thus spatiotemporally chaotic while
it is perfectly synchronized with the dynamics of the other
beam half. The occurrence of this synchronized spatiotempo-
ral chaotic state is due to the fact that only modulational
instabilities have occurred, i.e., only pairs of modes with
transverse wave vectorskW152kW2 oscillate. This causes the
solutions to have space inversion symmetry. The occurrence
of traveling wave instabilities which are widespread in lasers
would completely modify the situation, causing symmetry-
broken solutions already in the regular regime. The synchro-
nization of the two beam halves is caused by the diffractive
coupling. Since this is a local effect, the beam halves are
only indirectly coupled through the beam center. From there,
information spreads symmetrically to both beam parts and
acts thus as a synchronizing signal. It is thus one signal
which is transported through the subsystems and synchro-
nizes their dynamics. Similar situations have been described
for spatiotemporal chaos in coupled map lattices@12# where
it is possible to synchronize different subsystems by linking
only a few of their dynamical variables.

As the amplitude of the input beamA is further increased,
the dynamics becomes more chaotic while the strength of the
linking signal being determined by the diffraction strength
remains constant. Consequently, this leads to a breakdown of
the synchronization atA;1.0191 with apparently no corre-
lation between the beam halves@Fig. 1~b!#. This situation is
very reminiscent of the first observation of on-off intermit-
tency in symmetrically coupled logistic maps which is due to
a formal correspondence between these two cases: two
coupled maps

xn11
~1! 5~12e! f ~xn

~1!!1e f ~xn
~2!!, ~4!
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xn11
~2! 5~12e! f ~xn

~2!!1e f ~xn
~1!! ~5!

can be transformed by a rotation of the coordinate system
by p/4 to the variables r5(x(1)1x(2))/2 and
s5(x(1)2x(2))/2:

r n115 f ~r n!1g~r n ,sn!, ~6!

sn115h~r n ,sn!~122e!sn , ~7!

g~r n ,sn!5@ f ~r n1sn!1 f ~r n2sn!22 f ~r n!#/2, ~8!

h~r nsn!5@ f ~r n1sn!2 f ~r n2sn!#/2sn . ~9!

Here r n11 describes the synchronized part of the signal
while sn11 describes its nonsymmetric parts. In this repre-
sentation, an important property of Eqs.~4! and ~5! is re-
vealed: if a synchronized chaotic process exists, it is com-
pletely described by the dynamics ofr n while sn50 holds.
Thenr n acts as a chaotic driver forsn while — to the leading
order insn2sn does not influence the dynamics ofr n @16#.
Since this is the necessary condition for the occurrence of
on-off intermittency as discussed in Sec. I, ensembles of
identical coupled maps displaying synchronized chaos are
likely to display this bifurcation. In spatially extended sys-
tems whose solutions obey inversion symmetry this transfor-
mation can be applied pointwise for variables at points lying
symmetrically to the symmetry axis. It is thus the symmetri-
cal modes withE(x,t)5E(2x,t) where x is the distance
from the symmetry axis which drive the nonsymmetric ones.
Spatially extended chaotic systems with inversion symmetry
are therefore to the same extent likely to display on-off in-
termittency as are ensembles of coupled maps.

To further elucidate this point, we introduce a quantity
which measures the amount of symmetry breaking of the
beam profiles, namely,

S5E
20.2

0.2

uE~2x!2E~x!udx. ~10!

This quantity corresponds tosn11 in the case of coupled
maps. For symmetric profiles,S50 holds,S.0 otherwise.
A typical time series ofS above the bifurcation to nonsym-

metric solutions shows the characteristic qualitative feature
of on-off intermittent signals: regions withS50 ~laminar
phases! andsÞ0 ~turbulent phases! are clearly distinguish-
able. The transitions between these phases are sharp and do
not display oscillatory behavior which is characteristic for
on-off intermittency~Fig. 2!. To investigate the quantitative
properties of the transition we calculate the distribution sta-
tistics of the laminar phases in dependence on~a! the dis-
tance of the bifurcation parameterA from the bifurcation
point Ac and~b! the duration of the laminar phase at a fixed
bifurcation parameter. The results of this analysis are shown
in Figs. 3 and 4, respectively. The duration of the mean
laminar phasêL& obeys a power-law scaling with a critical
exponent of21. The distributionP(L) of the duration of the
laminar phases at a fixed bifurcation parameter shows a
power-law scaling with an exponent2 3

2 . A variation of the
threshold which distinguishes between laminar and turbulent
phases does not evidence a significant dependence of these
scaling laws.

The scaling characteristics and the qualitative features of
the transition thus coincide with the observations reported
for other systems showing on-off intermittency. Examination
of the spatial properties of the transition shows new interest-
ing features. By evaluating the normalized local amount of
symmetry breaking

s~x!5@ uE~2x!u2uE~x!u#/@ uE~2x!u1uE~x!u# ~11!

at different locationsx we observe that at all locations the
symmetry breaking bursts occur approximately at the same

FIG. 1. ~a! Ten synchronized beam profiles in the chaotic region (A50.98); ~b! ten beam profiles in the chaotic region where synchro-
nization has broken down (A51.05). In all figures the transverse coordinatex is normalized to unity and the intensity is given in
dimensionless units.

FIG. 2. Time series of the integrated symmetry breakingS at
A51.03.
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time, but with different amplitude~Fig. 5!. Therefore also in
the spatial domain a distribution of laminar and turbulent
regions exists. This becomes evident in Fig. 6~a! where
s(x) is displayed for successive cavity passes in a contour
representation. An irregular distribution of areas with high
and low values ofs(x) is observed. The stripelike organiza-
tion of s(x) is due to the defocusing nonlinearity which
transports perturbations to the outer pars of the beam. Since
the influence of the linking signal is highest in the beam
center and decreases in the outer parts,s(x) increases with
increasingx. This is demonstrated in Fig. 6~b! wheres(x) is
time averaged and plotted as a function ofx. A roughly
linear increase ofs(x) with increasingx is revealed, while

the superimposed oscillations reflect the space frequencies of
E(x). By setting a cutoff fors(x) as a distinguishing crite-
rion between laminar and turbulent domains we are able to
calculate the probability distribution of the laminar phases.
Thereby we limit our investigation to the central part of the
beam, discarding laminar phases with a spatial length of
more thanL50.2. This is necessary because the contribu-
tions of the tail of the beam cannot be considered as signifi-
cant due to the low values of the input beam in these parts.
The spatial distribution of the laminar phases is computed for
every beam profile and then summed over many cavity
passes. Figure 7 shows the resulting distribution of laminar
phases with spatial lengthL at a fixed parameter value. We
observe a definite power-law scaling with a characteristic
exponentm0. At higher parameter values, slight deviations
from a power law are observed: the slope of the curve in-
creases for long laminar phases, causing an upper and a
lower bound for the characteristic exponent. In Fig. 8 the
dependence of the characteristic exponentm0 of the power
law on the distance of the parameter value from the bifurca-
tion pointA2Ac is plotted.m0 increases with the distance of
the parameter value from the bifurcation pointA2Ac for
small values ofA2Ac while it saturates at higher values. No
clear functional relation for the dependence ofm0 on
A2Ac can be observed.

The observed scaling behavior shares common features
with the scaling reported for spatiotemporal intermittency
@3,4#. There the probability distribution of the spatial lengths

FIG. 3. Dependence of the mean duration of laminar domains
from the distance from the bifurcation pointA2Ac .

FIG. 4. Probability distributionP( l ) of laminar domains of du-
ration l at a fixed parameter value (A51.035).

FIG. 5. Time series of the normalized local symmetry breaking
s(x) at different locationsx (A51.035).
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of the laminar phases displays a power law at parameters
near the onset of spatiotemporal intermittency and exponen-
tial decay for higher parameter values. The characteristic ex-

ponentm0 of the latter depends quadratically on the distance
from the border between these two regimes while the char-
acteristic exponent of the power law does not change when
the bifurcation parameter is varied. In the case investigated
here, a power-law distribution of the laminar phases has also
been observed directly above the onset of on-off intermit-
tency. Its exponent, however, depends on the bifurcation pa-
rameter. While no clear functional relation for the depen-
dence ofm0 onA2Ac can be extracted, the deviations from
a power law for long laminar phases at higher parameter
values might indicate a qualitative change of the functional
dependence ofP(L). We conclude that on-off intermittency
in extended systems and spatiotemporal intermittency there-
fore bear strong qualitative similarity which need further in-
vestigation.

IV. CONCLUSION

The present study has revealed that the breakdown of syn-
chronized spatiotemporal chaos in the transverse Ikeda sys-

FIG. 6. ~a! Gray-scale contour plot of the local symmetry break-
ing s(x) as a function of space and time atA51.045. Dark regions
indicate low values ofs, light regions high values.~b! s(x) time
averaged for 10 000 cavity passes.

FIG. 7. Probability distribution of laminar phases with a spatial lengthL at a fixed parameter value (A51.035).

FIG. 8. The characteristic exponentm0 of the power-law scaling
as a function of the distance from the bifurcation pointA2Ac . Plus
signs mark the lower bound form0 while triangles denote its upper
bound.
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tem is due to spatiotemporal on-off intermittency. The scal-
ing behavior of this transition in the time domain coincides
with the one analytically derived and observed in other sys-
tems displaying on-off intermittency. In the space domain
the system displays a clear scaling behavior for which, how-
ever, no analytical derivation is available. Work in this di-
rection is therefore desirable.

Since the bifurcations are observed in wide parameter re-
gions we expect that the described effects are amenable to
experimental observation. We assume that this is particularly
the case for a system where the nonlinearity is provided by a
liquid crystal light valve which interacts with an electroni-
cally delayed light field, thus providing the fast saturable

absorber nonlinearity encountered in our model@31#.
Finally, since the conditions necessary for the occurrence

of on-off intermittency are very often met in systems dis-
playing synchronized chaotic motion it is expected that sys-
tems showing synchronized spatiotemporal chaos will ex-
hibit similar transitions.
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